Your browser is out of date. Mathspace won't be able to function correctly.
Mathspace system requirements
×
Book a Demo
Topics
D
i
f
f
e
r
e
n
t
i
a
t
i
o
n
R
e
v
i
e
w
o
f
G
r
a
d
i
e
n
t
a
n
d
O
r
i
g
i
n
a
l
F
u
n
c
t
i
o
n
s
N
o
t
a
t
i
o
n
s
f
o
r
t
h
e
d
e
r
i
v
a
t
i
v
e
(
i
n
v
e
s
t
i
g
a
t
i
o
n
)
L
I
V
E
R
a
t
e
o
f
c
h
a
n
g
e
f
u
n
c
t
i
o
n
s
D
e
r
i
v
i
n
g
t
h
e
P
o
w
e
r
R
u
l
e
P
o
w
e
r
R
u
l
e
(
x
^
n
)
D
e
r
i
v
a
t
i
v
e
o
f
a
S
u
m
(
x
^
n
)
P
o
w
e
r
r
u
l
e
(
a
x
^
n
)
D
e
r
i
v
a
t
i
v
e
o
f
a
S
u
m
(
a
x
^
n
)
P
o
w
e
r
r
u
l
e
(
x
^
n
a
n
d
a
x
^
n
)
D
e
r
i
v
a
t
i
v
e
o
f
a
S
u
m
(
x
^
n
,
a
x
^
n
)
F
u
r
t
h
e
r
d
e
r
i
v
a
t
i
v
e
s
u
s
i
n
g
p
o
w
e
r
r
u
l
e
D
e
r
i
v
a
t
i
v
e
o
f
a
p
o
l
y
n
o
m
i
a
l
(
e
x
p
a
n
s
i
o
n
t
h
e
n
p
o
w
e
r
r
u
l
e
)
E
v
a
l
u
a
t
e
D
e
r
i
v
a
t
i
v
e
a
t
a
p
o
i
n
t
T
a
n
g
e
n
t
s
(
g
r
a
d
i
e
n
t
s
a
n
d
e
q
u
a
t
i
o
n
s
u
s
i
n
g
p
o
w
e
r
r
u
l
e
)
S
i
m
p
l
e
a
p
p
l
i
c
a
t
i
o
n
s
(
u
s
i
n
g
p
o
w
e
r
r
u
l
e
o
n
l
y
)
S
p
e
e
d
,
d
i
s
p
l
a
c
e
m
e
n
t
a
n
d
v
e
l
o
c
i
t
y
K
e
y
F
e
a
t
u
r
e
s
o
f
G
r
a
p
h
s
a
n
d
t
h
e
D
e
r
i
v
a
t
i
v
e
Lesson
Practice
S
k
e
t
c
h
i
n
g
f
u
n
c
t
i
o
n
s
u
s
i
n
g
d
e
r
i
v
a
t
i
v
e
i
n
f
o
r
m
a
t
i
o
n
M
a
x
i
m
u
m
s
a
n
d
M
i
n
i
m
u
m
s
U
s
i
n
g
C
a
l
c
u
l
u
s
(
p
o
w
e
r
r
u
l
e
o
n
l
y
)
P
r
i
m
i
t
i
v
e
F
u
n
c
t
i
o
n
s
A
p
p
l
i
c
a
t
i
o
n
s
o
f
p
r
i
m
i
t
i
v
e
f
u
n
c
t
i
o
n
s
Log in
Sign up
Book a Demo
New Zealand
Level 7 - NCEA Level 2
Key Features of Graphs and the Derivative
Loading...