To graphically find the value of $f\left(g\left(9\right)\right)$f(g(9)) using the graphs of $f\left(x\right)$f(x) and $g\left(x\right)$g(x), what is the first value we typically determine from the graphs?
The value of $g\left(9\right)$g(9)
The value of $f\left(9\right)$f(9)
The $x$x-value where $f\left(x\right)=g\left(x\right)$f(x)=g(x)
The $y$y-intercept of $f\left(x\right)$f(x)
Consider the functions $f\left(x\right)=-3x+7$f(x)=−3x+7 and $g\left(x\right)=-5x+9$g(x)=−5x+9.
Given that $f\left(x\right)=4x^2-3$f(x)=4x2−3 and $g\left(x\right)=x-4$g(x)=x−4, find the composite function $\left(f\ \circ\ g\right)\left(x\right)$(f ∘ g)(x).
Consider the functions $f\left(x\right)=x^2$f(x)=x2 and $g\left(x\right)=x+5$g(x)=x+5.